
~ )  Pergamon 

0017-9310(94)00160-X 

lnt. Z Heat Mass Transfer. Vol. 38, No. 2, pp. 363-369, 1995 
Copyright © 1994 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0017-9310/95 $9.50+0.00 

The stability of a single-cell steady-state 
solution in a triangular enclosure 

HAYDEE SALMUNt 
Robert Hooke Institute, The Observatory, Clarendon Laboratory, Parks Road, Oxford OXI 3PU, 

U.K. 

(Received 29 January 1993 and in final form 18 March 1994) 

Abstract--For a triangular domain with a sloping cold upper surface and warm lower horizontal surface, 
and when the aspect ratio, or equivalently the slope, is very small, the three-dimensional problem may be 
reduced to a local two-dimensional problem between horizontally parallel planes at each location along 
the enclosure horizontal extent, reducing the problem to the classical Rayleigh-B6nard there. In this simple 
way it is possible to obtain a guide to the values of the critical Rayleigh number above which a known 

stezLdy-state solution is not stable to perturbations in the flow in a specified geometry. 

1. INTRODUCTION 

Poulikakos and Bejan [1] developed a model for the 
circulation patterns in a two-dimensional triangular 
cavity, with cold upper wall and warm horizontal 
bottom wall. Using the techniques described in ref. 
[2], they were able to find analytical expressions for 
the steady state in the form of asymptotic series valid 
for infinitely shallow enclosures. This solution con- 
sisted of a single convective cell, which they found 
(numerically) to be stable over a wide range of the 
parameters that govern the behaviour of this system. 
More recent works using similar geometries, however, 
seem to indicate that with the higher values of the 
Rayleigh number used by ref. [1] the steady-state cir- 
culation in irregular enclosures is characterized by a 
multi-cell structure, typical of the Rayleigh-B6nard 
convection systems. In particular, Salmun [3] reports 
results from considering basically the same problem 
which show the break down of the single cell into a 
multi-cell structure as the global Rayleigh number 
that characterizes the enclosure is increased beyond a 
value of approximately 4 × 10 3. This result suggests 
that the single-cell steady-state solution to this prob- 
lem is not stable to perturbations in the system as 
this parameter increases, and this fact motivated the 
present paper. 

The occurrence of secondary flows, in the form of 
longitudinal rolls, saperposed upon the natural con- 
vection main flow on inclined surfaces has been 
observed experimer.tally [4, 5] and analysed exten- 
sively [6]. In ref. [6] a brief review of this subject is also 
provided. This work, which considered rectangular 
enclosures, suggests that when the angle of inclination 
of the surface that is the source of instabilities is small 
(measured with respect to the horizontal) then the 
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most unstable perturbation takes the form of longi- 
tudinal rolls with their axes aligned with the direction 
of the slope. This is the assumed form of the per- 
turbation that will be considered in the present note. 

The recent work of Farrow and Patterson [7] pro- 
vides a method of analysing the stability of a basic 
flow solution in a wedge-shapped geometry that can 
be applied to the present problem in a straightforward 
manner. The main objective of the present con- 
tribution is to present the simple results obtained from 
a linear stability analysis of the steady-state asymp- 
totic solution in a shallow triangular enclosure, and 
to show that it is not stable to the type of instabilities 
expected in fluid layers heated differentially along 
horizontal boundaries. In Section 2 the mathematical 
problem is described and the solutions obtained by 
ref. [1], which will constitute the basic state upon 
which a perturbation will be superimposed, briefly 
summarized. The stability analysis is detailed in Sec- 
tion 3, where the final simple results are discussed, 
and Section 4 summarizes the present work. Although 
the validity of these results are limited to the context 
of the linear theory, they are in a remarkable good 
agreement with the detailed numerical results reported 
in ref. [3] and, in turn, lend further support to those 
results. 

2. PROBLEM FORMULATION 

The non-dimensional Navier-Stokes equations that 
describe the motion in the three-dimensional wedge- 
like geometry, whose cross-section in the plane (x, y) 
is depicted in Fig. 1, are : 

~u / ~u ~u\ Ou 

~7 + A2 Ra~ ~x u +vfffy)+Raw-~z 

= - P r ~ x + P r V Z u ,  (1) 
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NOMENCLATURE 

A aspect ratio, H/L 
Gr Grashof  number,  9ct(Th -- T~)H3/v 2 
9 acceleration due to gravity 
H enclosure maximum height 
i 
J Jacobian operator : for any given 

functions A and B, J ( A ,  B) = 
(~A/Ox)(~B/~y)--(~8/Ox)(~A/~y) 

L enclosure horizontal extent 
m wave number  
mcrit critical wave number  
V~ non-dimensional  Laplacian operator : 

v 2 = A2 (~2/~x ~) + (~l~y~) + (O~/Oz ~) 
Prandtl  number,  v/~c 
pressure 
perturbation pressure 

Ra, Ran global Rayleigh number,  
go~( Th -- TI)H3 /vl¢ = Gr x Pr 

e r  

P 
P 

Ra:, local Rayleigh number,  Ran/x 
Racrit critical Rayleigh number  
t time 
T temperature 
Th temperature of the warm horizontal 

wall 
T~ reference temperature, that of  the cold 

sloping wall 

u velocity vector 
U perturbation velocity vector 
u, v, w velocity components 
V, W perturbation velocity components 
x,y,  z Cartesian coordinates system, y 

vertical. 

Greek symbols 
coefficient of thermal expansion 

e perturbation parameter 
q wave number  
0, ® perturbation temperature 

thermal conductivity 
v kinematic viscosity 
a growth rate of perturbation 
~b, q~ perturbation stream function 

two-dimensional stream function 
o)x x-component  of the perturbation 

vorticity field. 

Subscript 
s characteristic scales. 

Superscript 
0 zeroth order solutions [O(A°)] and 

basic state flow. 

Th I 
=Ig 

I, L q 

Fig. 1. A cross-section of a three-dimensional wedge-like 
geometry. The z-coordinate is perpendicular to the (x,y) 

plane of the figure and positive out of the page. 

2 Ov 4 / Ov Or\ 2 ~v A Raw z 

= --Pr~yy +A 2 Pr VZv+Pr T, 

c3w / ~w Ow\ Ow 
~ + A2 Ra~u~x +V~yy)+ R a w ~ z  

(2) 

ap +Pr V~w, (3) = - P r ~ z  

o t + A Z R a  U~x+V +Raw~z=V2AT ,  (4) 

2/Ou ~v) ~w 
A = 0 ,  (5) 

where V 2 is the non-dimensional  Laplacian operator 
defined in the Nomenclature. The z-coordinate is per- 
pendicular to the plane of the figure and positive in 
the direction towards the reader. The system is subject 
to the boundary conditions : 

u = v = w = O  T = I  on y = 0 ,  (6) 

u = v = w = O  T = 0  on y = x ,  (7) 

and to the initial conditions u = v = w = 0, T = 1 at 
t = 0 .  

The scales used in the non-dimensionalization 
scheme are derived from considering the appropriate 
balance of forces valid for laminar flow in fluids of 
Pr .~ 0 (1), namely:  buoyancy forces are mainly bal- 
anced by viscous forces. The length, velocity and time- 
scales are : 

xs = L ys = H zs = H 

v H 2 
w s = G r ~  t~ -  1¢ ' 

respectively. The non-dimensional  temperature field 
is measured relative to the temperature of the sloping 
wall and contains Ts = A T =  Th-T~ as the tem- 
perature scale. It should be noted that the Grashof  
number,  Gr, is based on the enclosure height, the 
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maximum separation distance between the two inter- 
secting boundaries, which is considered constant. The 
vertical pressure gradient, readily estimated from the 
y-momentum equation, is tug,AT while the hori- 
zontal pressure gradient term is ~AgctAT. The pres- 
sure gradient term in the z-direction is also ~yctAT. 

If w = 0 and variations in the z-direction are neglec- 
ted, then the system of equations that results describes 
the two-dimensional problem studied in ref. [1]. The 
usual elimination of the pressure terms and use of the 
stream function in two dimensions yields the non- 
dimensional equatiens, which for the steady-state flow 
are : 

2 2 RaA J ( A  O~--~+ 02~ll~y2,1!l)'' 

( o2 o2)(A2o2 o2o)_or 
=Pr A2i~-x2+Oy2] \ Ox2+ Oy 21 O~' 

K Ra AZJ(7, ~,) = (A 2 + T, (8) 

where the Jacobian operator J is defined as usual (see 
Nomenclature). 

Details of the method of solution and the solutions 
themselves may be found in ref. [1], and are briefly 
summarized below. In the limit A --, 0, solutions for 
@(x,y) and T(x,y) in the form of an asymptotic series 
in A 2 can be found, which satisfy the boundary con- 
ditions : 

0q, 
T = I  O = 0  ~ y = 0  on y = 0 ,  

T = 0  ~b=0 ~ y = 0  on y=f (x ) ,  (9) 

where f(x) describes the shape of the upper wall. In 
the simple case of a shallow enclosure with a flat top 
boundary, f(x) = x and the Solution to lowest order 
(the largest contribution to the asymptotic series in 
any case) which is of interest here is given by: 

T O = 1 - y ,  
X 

1 (-I~0YS l y 3 + l x y 2 )  (10) q,0 = ~ x ~ 

This solution represents slightly tilted and evenly sep- 
arated isotherms which give rise to a steady counter- 
clockwise convectiw~ cell that fills in the entire domain. 
At any given x the longitudinal flow in the cavity is of 
the shear-type. In this approximation, the end-turn 
region in the neighbourhood ofx = 1, infinitely short, 
serves to turn the flow by 180 ° and has no other effect 
on the circulation or heat transfer in the enclosure. 
The isotherm patterns in the limit A ~ 0 are consistent 
with a system in which the mechanism that dominates 
the heat transfer across the cavity is conduction. 

3. STABILITY ANALYSIS 

To examine the stability of the zeroth-order steady- 
state solution to small perturbations in the flow and 
to determine a critical Rayleigh number above which 
secondary motion associated with instabilities may be 
expected, the approach used in ref. [7] is followed. 
Consider the O(A °) flow given by equation (10) and 
let this initial state be slightly perturbed according to 
the following expressions : 

(u, T,p) = (u°+eU, T°+eO,p+eP), (11) 

where e << 1 is the perturbation parameter, u ° =  
(u°,v °) and U =  (O,V/A 2, IV); the factor (1/A 2) is 
introduced here so that Vand Ware of the same order 
(cf. velocity scales). Alternatively, the perturbation 
stream function in the (y, z) plane considered below 
can be defined including that factor to achieve the 
same end. Since only longitudinal modes of per- 
turbation are considered, the perturbation fields are 
x-independent, although, as seen below, the set of 
equations that describes the perturbed system depends 
on x. To obtain the linearized equations of motion 
that govern the perturbed state, substitute the pertur- 
bation functions into equations (1)-(5) and linearize 
the result with respect to e. Note that O(A 2, A 4) terms 
are negligibly small, since the condition A -~ 0 holds. 
The O (e) equations that result are : 

Ra V Ou° = --Pr oP (12) 
Oy Ox ' 

OV_ _prOP Ot Oy +PrV2V+PrO'  (13) 

0W 0P 
Ot = - Pr ~z + Pr V z IV, (14) 

00 OT ° 
+Ra V~f-y = V20, (15) O~ 

OV OW 
+ ~ = 0, (16) 

where here V 2 = 02/@2 + 02/Oz 2 only. 
It is immediately evident that the basic state flow u ° 

is not involved directly in the mean balances of the 
secondary motion, implying that within the approxi- 
mations considered here the stability of the flow does 
not depend explicitly on u °. Consequently, the three- 
dimensional stability problem can be reduced to a 
two-dimensional problem for an infinitely long wedge- 
like geometry. Consider the perturbation vorticity 
component in the x-direction, 

OW 0V 
~Ox- @ Oz' 

and use equation (16) to introduce a perturbation 
stream function ~g so that O~x = -V2qL In terms of the 
perturbation fields, q~ and ®, the system of equations 
above may be reduced to : 
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2 ~ 0  ~ V  tp = PrV4ty  + ~ z  ' (17) 

aO c~q j c~T ° 
~-  + Ra ~z ~ -  - V2®' (18) 

with boundary conditions : 

OLg 
( P = ~ y  = 0  ® = 0  on y = O , x .  (19) 

The explicit dependence of the (y, z) perturbation 
equations on x, through the boundary conditions, 
expresses the locality of this problem now; at every 
location x, solutions to equations (17)-(19) will be 
sought and the instability will be determined by local 
conditions. 

Perturbation quantities are described by the set of 
normal modes : 

(W, ®) = [¢(y), 0(y)] x e . . . . . .  , (20) 

where m is the wave number of the disturbance and cr 
is a constant (both real). The real part of functions 
is implicitly understood in this section. Substituting 
equation (20) into (17) and (18), and eliminating 0 
from the equations that result, yields a single equation 
in ¢:  

D - -m 2 _ a ~ (D 2 - -m 2 _ a ) ( D 2  _m2) ¢ 
Pr] 

= m 2RaDT°49,  (21) 

where D = d/dy. The transition from stability to insta- 
bility occurring via a stationary state (see ref. [8] for a 
discussion on the classical Rayleigh-B6nard problem) 
will be described by equation (21) when a = 0. 

At this point it is useful to recall that the Rayleigh 
number is a non-dimensional parameter defined in 
terms of fluid properties (v, x, etc.) and the desta- 
bilizing temperature gradient of the basic state. In the 
present system, the dimensional basic state tem- 
perature is given by [cf. equation (10)] T°im = 
(1 --(y/x))AT+ T~ so that its vertical gradient is: 

1 9  AT 
~yy T°im - -  e x '  

and defines: 

g ~ A T H  3 1 
Ra:, 

VK X ' 

where x is non-dimensional. Let now Rax = Rail~x, 
where Ran stresses that the Rayleigh number as 
defined previously is based on the original enclosure 
height, a constant taken as the characteristic vertical 
length-scale. This expression may be thought of as the 
relation between global and local Rayleigh numbers 
and it anticipates that, within the context of this analy- 
sis, there is not a single value of Ra below which the 
basic flow solution considered here will be stable, since 

0 < Rax < ~ as x decreases towards zero, respec- 
tively. This analysis may, however, provide for a lower 
bound on the values of Ra that can be allowed if 
instabilities in the flow are to be prevented, as will be 
seen below. 

The marginal state is then described by : 

( 3  2 --m2)3q~ = - - m  2 Raxc~,  (22) 

where DT ° = - ( l / x )  from equation (10) has been 
used. The solutions to equation (22) must satisfy the 
boundary conditions : 

qS=Dq~=(D2-m2)2~b=0  on y =  +½x. (23) 

In writing equation (23) the symmetry of this problem 
with respect to the two bounding surfaces was used. 
This is" the origin of y was translated to lie midway 
between the two intersecting surfaces, along an axis 
that bisects the wedge, so that the fluid is assumed to 
be confined between y = _+ ½ x rather than between 
y = 0, x. Although strictly speaking, the fluid is now 
confined between y = _+ [½x+ O(A2)], for this is the 
equation of the bisecting line, for the present case 
(A ~ 0) the assumption is amply justified. Equations 
(22) and (23) express the classical characteristic value 
problem for Rax : only for some values of Rax, for 
given m, will this sixth-order differential equation 
allow for non-trivial solutions. Moreover, in this case, 
this condition must be satisfied at a given location x. 
Then the critical value of Rax at which the instability 
may first occur, Ramt, is the smallest positive value of 
Rax for a given m and may be thought of as para- 
metrically dependent on the variable x .  The dis- 
turbances present at marginal stability are char- 
acterized by wave numbers denoted by merit. 

In summary the problem now has been transformed 
as follows: at each location x along the wedge, the 
classical instability problem of two rigid parallel 
plates, vertically separated by a distance _½x and 
kept at different temperatures, is solved. In the classi- 
cal case, that of horizontal boundaries, equations (22) 
and (23) describe the behaviour that must be satisfied 
by the vertical structure of the (three-dimensional) 
velocity perturbation field (all the velocity field, in 
fact, since in that case the basic state is that of rest 
and purely conductive). In the present case, and within 
the validity of the small slope approximation, the 
problem to O(A °) can be cast in terms of the two- 
dimensional [in the (y, z) plane] stream function per- 
turbation field with a basic state represented by a 
very slow convective cell which results in a quasi- 
conductive steady-state temperature field. Math- 
ematically, however, the problems are identical, hence 
the method of solution for ¢(y) here is the same as 
that for w (y) in the classical B6nard problem, details 
of which can be found in ref. [8] (Chap. II) and is 
briefly summarised here. The only difference, as men- 
tioned earlier, is the parametric dependence on x, 
which is now included above in the definition of Rax 
and hence the implications for the stability of the 
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basic flow will be different, but in essence the present 
problem is now solved. 

The evenness of  the operator in equation (22) and 
the symmetry in boundary conditions (23) imply that 
the solutions to equation (22) will separate into even 
and odd solutions, the lowest mode being an even one 
with no nodes in the domain. This solution will yield 
the lowest possible value of a critical Ra~, hence atten- 
tion is focused on this solution only. Solutions for 
~b (y) of the form q~ (y) oc exp (-+ r/y) are sought and the 
procedure follows that of ref. [8] except that Ra there 
must be replaced by Rax here. The six roots for r/are 
thus found and the boundary conditions are applied 
to the even solutions to find the pertinent constants. 
The requirement that boundary conditions be satisfied 
in the case of non-trivial solutions yields, after some 
straightforward algebra, the condition that : 

j m Z x  mcx  O, 
{(3 + lx//3) Z tanh ~ }  + x/~ c tan ~ - =  

(24) 

where J denotes the imaginary part of the complex 
number in brackets, 

q'~ l i / :  Z=4{[(l+q+'12)I/2+(l+~) j 
+i[(l+q+q2)1/2_(l+ q'~ll/2"[ 

2]J J' 

and 

,: = ( q -  1)1/2, 

where q here is defir~ed such that : 

Rax = ma q 3. (25) 

Alternatively, at each x,  Ran=maq3x  and it is 
obtained after solving the transcendental equation 
(24) relating m, x and q. The values of q satisfying 
equation (24) for each m and x are found numerically 
using a N A G  Fortran Library Routine (COAJF) 
which locates the ze::os of a continuous function by a 
continuation method using a secant iteration, and the 
minimum of the characteristic values of Ran at each 
x is then easily found. 

Results obtained by this procedure are summarized 
in Table 1 and Figs. 2 and 3. Table 1 shows the values 
of merit and Racrit at some values of x while in Fig. 2 
the variation of Raerit with location x and the variation 
of merit with x are depicted. Figure 3 shows typical 
curves of the Rayleigh numbers at which instability 
sets in for disturbances of  different wave numbers m, 
at the different locations x indicated by the number 
on each curve, for the first even mode. The results are 
simple and as anticipated. For  example, when x = 1, 
the classical solution for the case of two horizontal 
parallel planes, separated in the vertical by a distance 
of unity, is obtained ; i.e. the critical Rayleigh number 

Table 1. The critical values of the Rayleigh num- 
ber and wave number for various locations along 

the wedge 

X merit Raent 

0 oo oo 

0.125 24.93 874 374.03 
0.250 12.47 109 296.80 
0.500 6.23 13 662.10 
0.750 4.16 4048.04 
1.000 3.12 1707.77 
1.500 2.08 506.01 
2.000 1.56 213.47 
3.000 1.04 63.25 
4.000 0.78 26.68 
5.000 0.62 13.66 

oo 0 0 

106 " i I I i I 

10 5. 

104 .  

1o3- 

10 2 .  

10, i i ; ~ 5 
X 

Fig. 2. The lower bound for Rac~it a s  a function ofx ( 
and the variation of merit with x ( . . . .  ). 

15 

10 

5 

2 . 0 × 1 0  4 , I i i i J i i 

1 . 5 ~ 1 o 4  ~ o . 5 o /  

1.0xl0 4 ~ 

5'0x103 y 
0 75 
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Fig. 3. The Rayleigh numbers at which instabilities set in for 
perturbations of different wave numbers m for the first mode, 
at the different positions x indicated by the number on each 

c u r v e .  
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at which instability occurs is Racrit ~ 1707.765, for 
disturbances with m ~ 3.12 (~-~mcrit). 

The curves are all similar as Racrit decreases with 
increasing x. Near  the tip of  the wedge the Rayleigh 
number necessary for instability is, as expected, much 
larger than that needed when the boundaries are sep- 
arated by a larger distance while kept at the same 
temperature, indicating the removal of  the stabilizing 
influence of  boundaries on the flow. In fact, the region 
very near the tip of  a shallow wedge will be always 
stable since it reaches an average temperature between 
that of  the two adjacent boundaries. The decrease in 
Ra~,it is, however, much slower for values of  x > 1 
than for those values o f x  < 1. Longwave disturbances 
become unstable at lower values of  Ra as x increases 
for the range Ra < Raorit while shortwave disturbances 
become unstable at lower values of  Ra for the range 
Ra > Rac~t only if x < 1. For  values of  x > 1 and 
in the range Ra > R a , i ,  longwave disturbances need 
higher values of  Ra to go unstable. The crossing over 
in these curves indicates that when x > 1, according 
to the linear theory, disturbances of  the shortwave 
type will become unstable at values of  Ra lower than 
those corresponding to their local Ra(m) curve 
obtained by solving equation (24) for large x. 

4. SUMMARY 

The stability of  a known, steady-state, two-dimen- 
sional asymptotic solution to secondary flow dis- 
turbances was analysed using linear theory. The linear 
stability analysis provided a lower bound to the criti- 
cal Ra and predicts that in the limit A ~ 0 the single- 
cell circulation is not  stable when the global Ra, that 
defined using the maximum vertical height H that 
separates the two boundaries at L, increases beyond 
about  1.8 x 103 for a wedge-like geometry that extends 
horizontally up to x = L. Numerically, ref. [3] found 
that in triangular enclosures of  small aspect ratios 
the single-cell circulation breaks down into a multi- 
cellular pattern when the global Ra is increased 
beyond the value of  about  3 x 103. The linear stability 
theory yielded a Raori, ,~ 1707.8 while numerically the 
bifurcation occurred at Rac~ ,~ 2886, about  1.5 times 
larger than the predicted value. 

In ref. [3] the stability of  the solutions obtained by 
ref. [I] to changes in Ra was numerically studied in 
detail for the case that corresponds to x = 1 in the 
present nomenclature. For  the present note some 
numerical simulations using the model  described in 
ref. [3] were carried out to test the general predictions 
of  the linear stability analysis. The numerical model  
was adapted to solve the same problem for the cases 
when the horizontal extent of  the cavity is smaller and 
larger than L, corresponding to the non-dimensional 
variable x < 1 and x > 1 used in the stability analysis. 
Using fixed values of  A = 0.2 and Pr = 0.72, cavities 
equivalent to x = 0.5 and x = 2 were considered, and 
solutions were numerically found for values of  Ra 

varying between 7200 and 72 000 in the first case, and 
between 72 and 720 in the second. The flow fields 
developed in the same way as for the experiments 
with x = 1 and it was determined that with x = 0.5 
numerically Rac~ ~ 2 × 10 4 while, with x = 2, 
Racrit m 360. When these values are compared with 
the theoretical values of  Racrit of  Table 1, again the 
numerical values of  Racri t appear to be about  1.5 times 
the theoretical ones. 

F r o m  the experimental measurements described in 
ref. [9], it was concluded that the onset of  convection 
in a three-dimensional trapezoidal enclosure occurs at 
progressibly lower Ra as the angle of  inclination of  
the top wall with respect to the horizontal increased 
from zero. The angle was varied by rotating the upper 
wall about  the horizontal wall, with a fixed point 
located at the top of  the mean cavity height so that 
the angle of  0 ° corresponded to a rectangular 
geometry while the largest angle they achieved con- 
verted the (x, y) section of  that geometry into a tri- 
angular one, with the mean height of  the enclosure 
remaining fixed. Since their definition of  Ra was based 
on the latter, the procedure of  varying the angle that 
way may be thought of  as analogous to increasing the 
location of  the 'end'  of  an originally two-dimensional 
wedge-like geometry, namely increasing x beyond 1 
(or L in dimensional terms) in the present notation, 
and it is encouraging that in their experiments this 
results in the same qualitative lowering of  the value 
of  Racm. 

Results from the linear theory are not  able to pro- 
vide an exact Racrit but they provide a lower bound 
for Raont below which secondary motion of  the type 
assumed in this note will not  occur, which is a function 
of  location along the wedge. In the context of  the 
problem at hand, that of  a finite triangular cavity, 
these simple results may be viewed as a guide for the 
values of  Ra that can be allowed for a given geometry 
once the boundary conditions are specified and if 
instabilities in the flow are to be prevented. 
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